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Abstract

This paper is an introduction to the field of semantics of programming languages, describing three kinds of
semantics—operational,  denotational,  and  axiomatic—and a  most  primitive  programing language called  the
lambda calculus.

Not only is it possible to reason about programs and programming languages formally, doing so carries very
important benefits of eliminating ambiguities, acquiring a greater understanding of the issues addressed by the
language, and the possibility of verification.  Such formal reasoning and verification, already in use in designing
hardware, will become much more important in the years and decades ahead as software verification systems
become usable and widely available.  When that time comes, the art of computer programming will change
forever.

1.  Introduction

Semantics
Semantics is the study of meaning.  A computer program in isolation is just a sequence of syntactic characters.
The semantics or meaning of a program is generally defined to be its behavior.  The semantics usually become
apparent  when the  program is  run on a computer,  although this  is  not  necessary—one can understand the
semantics of a program by, say, reading the source code.  For example, anyone familiar with the C language can
describe the behavior of the following program:
#include <stdio.h>

void main()
 {
 printf("Hello, world!\n");
 }

There is nothing inherent in this program's text or its syntax that would lead it to print the string “Hello, world!”
on the screen when run.  After all,  printf could have been defined as a function which returns the length of a
string, in which case the above program would do nothing.
Nevertheless,  in every valid C implementation the above program will  print the string “Hello,  world!” on the
standard output stream (usually the screen).  The fact that this is the defined action of the program follows from
the semantics of the C language, which is informally specified in [KR].
I emphasize the word “informally” in the above paragraph.  Whereas formal methods are widely used to specify
the syntax of a program (e.g. BNF grammars and syntax flowcharts), much of the specification of semantics is still
informal.  Nevertheless, significant formal systems for specifying semantics have existed for the past decade or
so, and they are gaining wider acceptance.  In this paper I will present three ways of formally specifying semantics
of programming languages:  operational semantics, direct denotational semantics, and axiomatic semantics.  I will
also discuss the utility and scope of formal semantics.
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Problems with Informal Semantics

Current Problems
Although  informal  specifications  of  programming  languages'  semantics  will  always  be  useful  for  teaching
programming, they are not without problems.  The largest problem is ambiguity.  The semantics of the Common
Lisp language were defined informally in an excellent book by Guy Steele [5].  Despite great efforts to eliminate
them, ambiguities in Common Lisp's specification persisted, leading to a gradual divergence of implementations
of the language.  One of the tasks before a current standards subcommittee is to resolve the ambiguities and
clean up the language.
The C language is another one for which the semantics were defined informally, and new ambiguities keep being
discovered.  The outcome of resolving all of the ambiguities is a large ANSI standard for the C language.  Despite
the size of the standard, there are no guarantees that more ambiguities will not be found in the language.
The ambiguities are not limited to programming languages.  For example, if you want to delete a number of files
in a Macintosh directory, do you know what the combined effect of using PBGetCatInfo and PBDelete is?  Might
not deleting files have adverse effects on PBGetCatInfo's numbering?

Current Solutions
The usual solution to ambiguities such as the one above is to try a sample program on a real system.  This is an
approach frequently taken by Macintosh developers when trying to figure out what something in Inside Macintosh
means.  Unfortunately, the system designer might have had a different idea about what the semantics were, and
programs relying on information obtained this way might break on future revisions of the system.  Someone who
tried the above PBGetCatInfo experiment would have noticed that the files are indexed in an alphabetical order
(thus the file index should be decremented by one every time a file is deleted), but is this guaranteed to hold for
future systems (or external file systems)?

Future Problems
The problems with precise definition of semantics are only going to get worse.  Object-oriented programming,
concurrency, and exception processing all open large Pandora's boxes of semantic problems.  What happens in
Object Pascal if  an object is disposed while a method defined on it  is still  executing?  In languages such as
Common Lisp that permit the types of objects to be changed at run time, what happens if the type of an object is
changed while it is used by some system service or while one of its methods is running?  In a C implementation
that supports concurrent processes, if process A stores the value 1 in a variable or a structure field and process B
later reads that value, is it guaranteed to get 1?  Enforcing a strict guarantee such as this one might restrict the
compiler  or  the  run-time  system too  much,  but  some  guarantee  must  be  made.   In  languages  supporting
exception processing, what happens when an exception occurs in the exception processing code?  What if the
language supports both the restart and resume models, as Common Lisp does?  The combinations of things that
can go wrong quickly become mind-boggling, and in most cases the eventual response of system designers is to
give up and rely on users not to attempt to do weird things.  There are just too many rules to spell out precisely.

Formal Semantics to the Rescue
Fortunately,  many  of  the  problems  from the  previous  section  can  be  addressed  by  formally  specifying  the
behavior of languages and libraries.  A formal description is unambiguous—barring mistakes, everyone reading a
formal specification should come to the same conclusions about the behavior of a system; thus, there is at least
hope that a language standard is enforceable.  It is not necessary that a formal specification define everything; in
fact,  many  formal  specifications  define  the  results  of  certain  actions  as  undefined in  order  to  give  system
designers some implementation latitude.
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Other Advantages
Formal semantics have other advantages as well.  Writing the semantics of a program forces the designer to think
clearly about the problems he is addressing.  Since formal semantics are mathematically precise, developing
them will often reveal subtle flaws in the design.  Furthermore, as will be discussed in the conclusion, developing
the semantics for an implementation brings at least the theoretical possibility of proving that the implementation
is  correct.   Computer  program  debugging  and  testing  will  be  revolutionalized  forever  once  this  theoretical
possibility becomes practical.
Formal semantics are not a cure-all, though.  They are hard to read for the uninitiated, and they do not solve all of
the problems associated with good language design.  They may also be overkill for many simple language design
jobs.

Kinds of Formal Semantics
There are three main kinds of formal semantics, differing by their levels of abstraction:
• Operational semantics describes the meaning of a program by defining a simple interpreter and translating
(compiling) the program into code that can be “executed” on the interpreter.  This form of semantics can lead to a
simple interpretation of the language—the interpreter can be implemented as a real program—but operational
semantics are often difficult to analyze theoretically.
• Denotational semantics describes the meaning of  a program by using a mathematical  function to map a
program to its meaning, which is represented as a mathematical value.  The behavior of the program can be read
directly from its meaning, and the meaning can be analyzed mathematically to yield further information.
• Axiomatic  semantics describes  the  meaning of  a  program by  listing  its  properties.   Axiomatic  semantics
descriptions are even more theoretical than those of denotational semantics and may not fully define the meaning
of a program.  Nevertheless, axiomatic semantics is useful for verification.

2.  Operational Semantics
Operational  semantics describes the meaning of  a  program by,  in  essence,  interpreting it.   For complicated
languages a procedure is also given to translate the program text into a simpler intermediate form, in essence
compiling it into a form that is easier to interpret.
To illustrate the use of operational semantics, a small language is defined below.  The syntax is as follows:

Stmt ::= BEGIN Stmt* END |
Var := Exp |
IF Exp THEN Stmt ELSE Stmt |
ε

Exp ::= Const |
Var |
Var ++ |
Exp + Exp |
Exp * Exp

Var ::= identifier
Const ::= TRUE |

FALSE |
integer
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It is easy to guess what the semantics of this programming language might be, but I will  not describe them
informally here.  Instead, I will immediately give a formal definition of the language's semantics and use them to
describe the behavior of a sample program.
We can represent the  state of an executing program written in the above language by an ordered pair <p,σ>,
where pis a Stmt, or [e,σ], where e is an Expr and σ is a representation of the contents of memory.  Formally, σ is a
function  σ:Var→Const that returns the value currently stored in a given variable.  The domain of  σ is the set of
defined variable names.
To determine the meaning of a program p, we attempt to reduce the initial state <p,σ>, where σ represents the
initial values of p's variables.  If it is an error to access a variable before it is set, we just make σ the null function
with the empty domain.
We reduce a state <p,σ> or [e,σ] according to the rules given below, which represent our semantics of the sample
programming language.  Here a ⇒ b denotes “a reduces to b.”  The reduction rules are transitive; i.e., if a ⇒ b and
b ⇒ c, then a ⇒ c can be inferred.  Some of the reduction rules have preconditions and are listed in the form \
F(Condition,Reduction).   This  means that  Reduction is  true if  Condition is  true.   Condition may be another
reduction, which has to be derived before  Reduction can be used.  Rules without preconditions can be used
anytime.
The notation  σ[v←c]  denotes a new function  σ' which is  identical  to  σ except  that  σ'(v)=c.   In  other  words,
σ'(w)=σ(w) when w≠v and σ'(w)=c when w=v.

\F(\L(<Stmt0,σ> ⇒ <Stmt0',σ'>),\L(<BEGIN Stmt0 Stmt1 … Stmtn END,σ> ⇒ <BEGIN Stmt0' Stmt1 … Stmtn 
END,σ'>)) (A)

<BEGIN ε Stmt1 … Stmtn END,σ> ⇒ <BEGIN Stmt1 … Stmtn END,σ> (B)

<BEGIN END,σ> ⇒ <ε,σ> (C)

\F(\L([Exp,σ] ⇒ [Exp',σ']),\L(<Var := Exp,σ> ⇒ <Var := Exp',σ'>)) (D)

<Var := Const,σ> ⇒ <ε,σ[Var←Const]> (E)

\F(\L([Exp,σ] ⇒ [Exp',σ']),\L(<IF Exp THEN Stmt1 ELSE Stmt2,σ> ⇒ <IF Exp' THEN Stmt1 ELSE Stmt2,σ'>)) (F)

<IF TRUE THEN Stmt1 ELSE Stmt2,σ> ⇒ <Stmt1,σ> (G)

<IF FALSE THEN Stmt1 ELSE Stmt2,σ> ⇒ <Stmt2,σ> (H)

\F(σ(Var) is defined,\L([Var,σ] ⇒ [σ(Var),σ])) (I)

\F(\L(σ(Var) is defined, and it is an integer),\L([Var ++,σ] ⇒ [σ(Var),σ[Var←σ(Var)+1]])) (J)

\F(\L([Exp1,σ] ⇒ [Exp1',σ']),\L([Exp1 + Exp2,σ] ⇒ [Exp1' + Exp2,σ'])) (K)

\F(\L([Exp2,σ] ⇒ [Exp2',σ']),\L([Const1 + Exp2,σ] ⇒ [Const1 + Exp2',σ'])) (L)
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\F(Const1 and Const2 are integers,\L([Const1 + Const2,σ] ⇒ [Const1+Const2,σ])) (M)

\F(\L([Exp1,σ] ⇒ [Exp1',σ']),\L([Exp1 * Exp2,σ] ⇒ [Exp1' * Exp2,σ'])) (N)

\F(\L([Exp2,σ] ⇒ [Exp2',σ']),\L([Const1 * Exp2,σ] ⇒ [Const1 * Exp2',σ'])) (O)

\F(Const1 and Const2 are integers,\L([Const1 * Const2,σ] ⇒ [Const1×Const2,σ])) (P)

A Derivation
As an example of the use of the above rules, let us derive the meaning of the following program p:
BEGIN
x:=3
IF TRUE THEN y:=x++*x
ELSE y:=17
END

The initial σ is the empty function {}1.  The only rule that can be applied to reduce p is (A), hoping that we can
later apply rule (B); however, to use rule (A) we must first show its precondition <x:=3,{}> ⇒ <ε,σ'>.  In order to
do this, we use rule (E) to obtain <x:=3,{}> ⇒ <ε,{x←3}>.  Substituting this as rule (A)'s precondition, we get <p,
{}> ⇒ <BEGIN ε IF TRUE THEN y:=x++*x ELSE y:=17 END,{x←3}>.  Applying rule (B) we get <p,{}> ⇒ <BEGIN
IF TRUE THEN y:=x++*x ELSE y:=17 END,{x←3}>.

Now we have to satisfy rule (A) again; to do this we must reduce the IF statement.  Rule (G) reduces <IF TRUE
THEN y:=x++*x ELSE y:=17,{x←3}> to <y:=x++*x,{x←3}>.  Since x++*x is not a constant, we must apply rule
(D) to reduce it to a constant, which we do as follows.  We want to reduce the multiplication operator, but to do
that using rule (P), both operands must be constants.  Rules (N) and (O) reduce expressions to constants; note
that rule (O) states that the left expression must be reduced before the right one can be.  To reduce x++ and x to
constants, we use rules (J) and (I) to get [x++,{x←3}] ⇒ [3,{x←4}] and [x,{x←4}] ⇒ [4,{x←4}].  Substituting using
rules (N) and (O), we get [x++*x,{x←3}] ⇒ [3*4,{x←4}], and then [3*4,{x←4}] ⇒ [12,{x←4}] using rule (P).  By
transitivity,  [x++*x,{x←3}]  ⇒ [12,{x←4}],  which  can  be  substituted using  rules  (D)  and (E)  into  <y:=x++*x,
{x←3}> to get <y:=x++*x,{x←3}> ⇒ <ε,{x←4,y←12}>.

This  reduction  is  then  used  to  reduce  the  remainder  of  the  BEGIN …  END statement  to  <BEGIN  ε END,
{x←4,y←12}>, then to <BEGIN END,{x←4,y←12}>, and finally to <ε,{x←4,y←12}>.  Thus, we obtain <p,{}> ⇒ <ε,
{x←4,y←12}>, which indicates that the program will terminate without errors and store 4 in x and 12 in y.

The entire derivation is summarized below:

(1) <x:=3,{}> ⇒ <ε,{x←3}> (E) 

(2) <p,{}> ⇒ <BEGIN ε IF TRUE THEN y:=x++*x ELSE y:=17 END,{x←3}> (A) using (1)

(3) <BEGIN ε IF … END,{x←3}> ⇒ <BEGIN IF … END,{x←3}> (2)

(4)  <p,{}> ⇒ <BEGIN IF TRUE THEN y:=x++*x ELSE y:=17 END,{x←3}>Transitivity (2) and (3)

1In this example, set notation is used for functions.  {a←b, c←d} represents a function f such that f(a)=b, f(c)=d, and f is undefined for
every other input.
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(5) <IF TRUE THEN y:=x++*x ELSE y:=17,{x←3}> ⇒ <y:=x++*x,{x←3}> (G)

(6) [x++,{x←3}] ⇒ [3,{x←4}] (J)

(7) [x++*x,{x←3}] ⇒ [3*x,{x←4}] (N) using (6)

(8) [x,{x←4}] ⇒ [4,{x←4}] (I)

(9) [3*x,{x←4}] ⇒ [3*4,{x←4}] (O) using (8)

(10) [3*4,{x←4}] ⇒ [12,{x←4}] (P)

(11) [x++*x,{x←3}] ⇒ [12,{x←4}] Transitivity  (7), (9), and (10)

(12) <y:=x++*x,{x←3}> ⇒ <y:=12,{x←4}> (D) using (11)

(13) <y:=12,{x←4}> ⇒ <ε,{x←4,y←12}> (E)

(14) <IF TRUE THEN y:=x++*x ELSE y:=17,{x←3}> ⇒ <ε,{x←4,y←12}>Transitivity (5), (12), (13)

(15) <BEGIN IF … END,{x←3}> ⇒ <BEGIN ε END,{x←4,y←12}> (A) using (14)

(16) <BEGIN ε END,{x←4,y←12}> ⇒ <BEGIN END,{x←4,y←12}> (B)

(17) <BEGIN END,{x←4,y←12}> ⇒ <ε,{x←4,y←12}> (C)

(18) <p,{}> ⇒ <ε,{x←4,y←12}> Transitivity (4), (15), (16), and (17)

Discussion
The  above  reduction  proceeded  without  a  hitch.   However,  sometimes  problems  arise  when  performing
reductions.  Two possibilities are stuck states—states where no rules apply—and states where several different
rules can be applied.
As an aside, note that nothing prevents one from introducing true but useless reductions while constructing a
proof.  For example, rule (I) could have been applied at step (8) to obtain, say, [x,{x←7}] ⇒ [7,{x←7}].  While this
is valid, it would not help in reducing <p,{}> because transitivity could not have been applied in step (11), as
[3*x,{x←7}] from step (9) would not match [3*x,{x←4}] from step (7).

Errors
A stuck state would be reached if, say, we were to try to reduce IF 7 THEN ε ELSE ε.  There is no reduction rule
for conditionals on non-boolean conditions.  Such a stuck state indicates that the program is in error.

Ambiguity and Determinism
The above language is deterministic—no matter in what order the rules are applied, the result will always be the
same.  The fact that the language is deterministic can be proved by induction.
Nevertheless, the language can be made nondeterministic, by, say, changing rule (O) to:

\F(\L([Exp2,σ] ⇒ [Exp2',σ']),\L([Exp1 * Exp2,σ] ⇒ [Exp1 * Exp2',σ'])) (O')

Now there are two orders in which the arguments to * can be reduced, and they will lead to different answers.  If
the right argument x is evaluated before x++, y will be assigned 9 instead of 12.
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This kind of nondeterminism can be useful to give language implementations some latitude.  Keep in mind that
nondeterminism is qualitatively different from ambiguity as described in the first section.  Nondeterminism means
that a program can have one of several specific behaviors depending on the implementor's choice; ambiguity
means that the language implementor and the program author may not agree on the language's semantics.  The
order of evaluation of expressions in C is nondeterministic, but not necessarily ambiguous; it is stated in the
language specification that programs must not rely on the order of evaluation of expressions.

Summary
Operational  semantics provides one way to  formally describe the meaning of  a  programming language.   Its
advantages are relative simplicity and the possibility of writing an interpreter to run the program by just coding
the  semantic  rules.   As  with  other  formal  semantic  systems,  operational  semantics  provides  a  way  to
unambiguously settle most language meaning questions2, just as BNF and other syntax notations settle most
language syntax questions.  All correct implementations of the language will have the same behavior, and any
correct, deterministic program will yield the same results on any implementation.

3.  The Lambda Calculus
The subject of the next section, denotational semantics, is not easy to understand, and to demonstrate some of
the ideas involved in a simpler context, I am introducing the lambda calculus in this section.  The lambda calculus
[3] is perhaps the simplest programming language, but it has been shown to be universal—any program written in
any other known programming language can be expressed as a lambda calculus program.  The lambda calculus is
the precursor of the modern programming language LISP.

Syntax
The syntax of a lambda calculus expression is extremely simple:

Exp ::= Var |
(Exp Exp) |
λVar . Exp

Var ::= identifier

Identifiers  are  used  to  represent  symbols,  also  called  variables.   The  (Exp1 Exp2) expression  is  called  an
application; Exp1 is generally a function and Exp2 its argument.  The λVar . Exp expression is a function that takes
one argument Var and returns the value specified by Exp.
Parentheses may be dropped if conventions to group applications left-to-right and assign  λ-expressions a lower
precedence than applications are adopted, so λa.bac ≡ λa.((ba)c).

Reduction Rules
There are three rules for reducing lambda expressions, as listed below.  The notation E[a/b] means replacing all
occurrences of b with a in E.  All of the rules below are bidirectional.  When several rules apply to a given lambda
expression, they can be applied in any order.  Two lambda expressions are equal if one can be reduced to the
other.

λx.E ⇔ λy.E[y/x], as long as y is not free in E (α)

2Some issues, especially dealing with input and output, will probably never be settled adequately and unambiguously.
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(λx.E)F ⇔ E[F/x] (β)

λx.Ex ⇔ E, as long as x is not free in E (η)

The  technical  restrictions  on  “free  variables”  are  necessary  to  prevent  inappropriate  “capturing”  of  scoped
variables.  As long as all variables have different names, the restrictions are not important.
Here are some examples of reductions:

(λa.λb.ba)cd ⇒ (λb.bc)d ⇒ dc (β, β)

(λa.(λb.b)a)cd ⇒ (λb.b)cd ⇒ cd (η, β) or (β, β)

(λa.aa)(λx.x) ⇒ (λx.x)(λx.x) ⇒ (λx.x) (β, β)

λa.ab ⇔ λc.cb, but not λa.ab ⇔ λb.bb!  (The latter would “capture” the free variable b.)(α)

(λx.xx)(λx.xx) ⇒ (λx.xx)(λx.xx) ⇒ (λx.xx)(λx.xx) ⇒ … (β, β, …)

The last expression cannot be reduced to a form where no more reductions are possible.

Universality
Although I will not prove that the lambda calculus is universal here, I will try to motivate how that might be true.
While  the  lambda  calculus  does  not  define  numbers,  mutable  variables,  records,  arrays,  lists,  loops,  multi-
parameter functions,  etc., it turns out that all of these capabilities can be emulated!  Below I sketch one well-
known way of emulating the natural numbers.
Define the macros below.  The macros are purely for readability; they should be expanded before the lambda
calculus reduction rules are used.

0 ≡ λa.λb.b
1 ≡ λa.λb.ab
2 ≡ λa.λb.a(ab)
3 ≡ λa.λb.a(a(ab))
4 ≡ λa.λb.a(a(a(ab))), and so on.

Succ ≡ λn.λa.λb.a(nab) is the successor function;
+ ≡ λn.λm.λa.λb.(na)(ma)b denotes addition.

Notice that two-argument addition was defined despite the fact that lambda calculus functions admit only one
argument: + is a function that takes the first number n and returns a function that takes the second number m
and returns n+m.  Thus, +3 is a function that adds 3 to whatever argument it gets, while +3 2 ≡ (+3)2 is 5, which
is verified below.  This  idea of  using one-argument functions to emulate multiple-argument functions will  be
important in the next section on denotational semantics.

+3 2 ≡ (λn.λm.λa.λb.(na)(ma)b) (λa.λb.a(a(ab))) (λa.λb.a(ab))
⇒ (λm.λa.λb.((λa.λb.a(a(ab)))a)(ma)b) (λa.λb.a(ab)) (β)
⇒ λa.λb.((λa.λb.a(a(ab)))a) ((λa.λb.a(ab))a)b (β)
⇒ λa.λb.(λb.a(a(ab))) ((λa.λb.a(ab))a)b (β)
⇒ λa.λb.(λb.a(a(ab))) (λb.a(ab))b (β)
⇒ λa.λb.(λb.a(a(ab))) (a(ab)) (β)
⇒ λa.λb.a(a(a(a(ab)))) (β)
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≡ 5
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Although I will not do it here, it is not difficult to define other macros such as *, Pred, and Zero?.  Zero? n E F will
return the value of E if n is zero and F otherwise.  Using these macros it is almost possible to define factorial:

Fact = λn.(Zero? n 1 (*n (Fact (Pred n)))) (1)

Unfortunately, this definition doesn't work, because the Fact macro is defined in terms of itself.  Nevertheless, it is
possible to define a recursive function in the lambda calculus by using a wonderful trick called the paradoxical
combinator Y:

Y ≡ λf.(λx.f(xx)) (λx.f(xx))

If f is a function, let g=Yf.  Then, it can be easily shown that g=f(g):

g ≡ Yf ≡ (λf.(λx.f(xx)) (λx.f(xx)))f ⇔ (λx.f(xx)) (λx.f(xx)) ⇔ (β, β)
f((λx.f(xx)) (λx.f(xx))) ⇔ f((λf.(λx.f(xx)) (λx.f(xx)))f) ≡ f(Yf) ≡ f(g) (β)

Thus, g is a “fixed point” of f—applying f to g returns g itself!  The Y operator finds such a function g for any given
f.
This is exactly what is needed to define a recursive function.  We rewrite equation (1) above to  Fact=f(Fact),
where f ≡ λh.λn.(Zero? n 1 (*n (h (Pred n)))).  Now we just find the fixed point of f and call it Fact:

Fact ≡ Yf ≡ Y λh.λn.(Zero? n 1 (*n (h (Pred n))))

Summary
The lambda calculus is a very simple programming language, comprised only of symbols, one-argument functions,
and one-argument  function applications.   Yet,  it  can be shown that  the lambda calculus  is  universal—it  can
compute anything that can be computed with any other programming language known.
The lambda calculus  will  be  used in  the  next  section  as  a  target  language  for  describing  the  meanings  of
programs.

4.  Denotational Semantics
Denotational semantics [6] [4] describes the meaning of a program by mapping it to a lambda expression.  The
meaning of a programming language consists of a description of the mapping procedure from the program text to
lambda expressions.  The lambda calculus is usually enhanced by adding numbers, types, conditionals, other
objects,  and  sometimes  nondeterminism,  but  this  does  not  fundamentally  change  the  concepts  behind
denotational semantics.

Concepts

Valuation Functions
The program is converted to a lambda calculus expression by using a valuation function.  I will use the sample
language from section 2 to illustrate the use of valuation functions.  That language consists of three main types of
syntactic entities, constants, expressions, and statements, each with its own valuation function.  The valuation
functions have the following “signatures” (types):

Κ: Const → Value
Ε: Exp → ExpContinuation → StmtContinuation
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Γ: Stmt → StmtContinuation→ StmtContinuation
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The same trick is used for Ε and Γ as for + in the previous section—a multi-argument function is constructed out of
single-argument ones.  Ε is a function which, when given an expression, returns a function which, when given an
ExpContinuation returns a StmtContinuation.
The mapping of constants to values by Κ is obvious; when given a constant like TRUE or 12345, Κ returns some
suitable lambda calculus representation of that value.  However, Ε and Γ deserve some explanation.

Meaning
For our sample language, the meaning of a program is the set of its side effects on variables.  What, then, is the
meaning of a statement?  Just listing a statement's side effects is not good enough, because the statement could
force some change of control flow (like a GOTO statement), or it could cause some exception or error.  Modeling
these actions as side effects on something like a program counter is difficult and counterintuitive.  Instead, we will
use the continuation-passing style to model meaning.  The meaning of a statement is a function Γ which takes the
meaning  of  the  remainder  of  the  program  (the  continuation,  also  written  as  a  StmtContinuation or  an
ExpContinuation) as an argument and returns the meaning of the statement combined with the remainder of the
program.   This  is  why the  signature  of  Γ is  Stmt → StmtContinuation→ StmtContinuation.   If  the  statement
terminates  normally,  its  meaning  will  be  comprised  of  its  side  effects  prepended  to  the  meaning  of  its
continuation (the meaning of the remainder of the program).  If, however, the statement causes an error, its
meaning will be just that error, regardless of the continuation3.

Type Definitions
The signatures of the variables to be used in the valuation functions are listed below.  The variables will be used
consistently; i.e., an e will always denote a Value, etc.

e∈Value = {TRUE, FALSE} ∪ Z            (Z is the set of integers)

s∈Store = Identifier → (Value ∪ {Error})

c∈StmtContinuation = Store → Answer

k∈ExpContinuation = Value → Store → Answer = Value → StmtContinuation

     Answer = Store ∪ {Error}

A Value is either a boolean or an integer.  A Store is a function mapping variable names to values or Error if the
corresponding variable has not been defined yet; the Store is used for holding the current values of variables and
performs a function analogous to σ from operational semantics.  StmtContinuations have been described above;
ExpContinuations are similar and are used to denote the behavior of the remainder of the program with respect
to an expression instead of a statement.   For the context of evaluating an expression, the remainder of the
program is expecting a Value.  Thus, an ExpContinuation is expecting an additional Value argument.  An Answer
is the result of running the program—either a final Store or an error4.

Sample Denotational Semantics
The valuation functions for the sample language from section 2 are as follows:

Ε[Const] = λk. k(Κ[Const])

Ε[Var] = λk.λs. isValue(s[Var]) ? k (s[Var]) s : Error

3This approach makes modeling languages which support various kinds of exception handling easy; in many languages a statement may
choose one of two continuations—a normal one and an exceptional one.
4The semantics could be modified to also return the Store in the Answer even if an error occurs.

12



13
Ε[Var++] = λk.λs. isInteger(s[Var]) ? k (s[Var]) (bind s [Var] (s[Var]+1)) : Error

Ε[Exp1 + Exp2] = λk. Ε[Exp1](λe1. Ε[Exp2](λe2.isInteger(e1) ? isInteger(e2) ? k (e1+e2)
                                                       : λs.Error
                                             : λs.Error))

Ε[Exp1 * Exp2] = λk. Ε[Exp1](λe1. Ε[Exp2](λe2.isInteger(e1) ? isInteger(e2) ? k (e1×e2) 
                                                       : λs.Error
                                             : λs.Error))

Γ[Var := Exp] = λc. Ε[Exp1](λe.λs. c (bind s [Var] e))

Γ[IF Exp THEN Stmt1 ELSE Stmt2] = λc. Ε[Exp1](λe.isBoolean(e) ? isTrue(e) ? Γ[Stmt1]c
                                                        : Γ[Stmt2]c
                                                 : λs.Error)

Γ[ε] = λc. c

Γ[BEGIN END] = λc. c

Γ[BEGIN Stmt0 Stmt1 … Stmtn END] = λc. Γ[Stmt0] (Γ[BEGIN Stmt1 … Stmtn END]c)

Notation
The quasi-lambda-calculus notation  isX(a)  ?  B :  C means that if  a is  an object of  type  X,  then  B should be
evaluated;  otherwise,  C should be evaluated.   (e1+e2)  and (e1×e2)  mean the sum and product  of  e1 and  e2,
respectively.  The (bind s id e) lambda calculus function returns a new store that is identical to  s except that
identifier id is bound to e.  It could be defined as:

bind = λs.λi.λe. λj. (i=j) ? e : (s j)

Discussion
Let us consider the first two valuation functions in more detail.  As indicated by its signature, Ε[Const] is a function
that expects an ExpContinuation (the meaning of the remainder of the program) and returns a StmtContinuation
(the meaning of the remainder of the program, including this expression).  Ε[Const] is pretty simple—it passes the
value Κ[Const] to the ExpContinuation it received, thereby passing the constant to the remainder of the program.
Since the signature of an ExpContinuation is Value → StmtContinuation, the result is a StmtContinuation, which is
returned as the meaning of the remainder of the program including the Const expression.
Ε[Var] is a little more complicated.  It too is a function that expects an  ExpContinuation (the meaning of the
remainder  of  the  program)  and returns  a  StmtContinuation (the  meaning of  the  remainder  of  the  program,
including this expression).  Ε[Var], when given an ExpContinuation, returns the following StmtContinuation c:

c first  grabs  its  Store argument  (remember  that  a  StmtContinuation,  as  indicated by  its  signature,  is  a
function that takes a Store as a parameter and returns an Answer).  Then, c checks whether Var is bound in
the Store.  If so, c returns the Answer obtained by passing the value of Var found in the Store and the Store
itself  to the original  ExpContinuation (an  ExpContinuation,  when passed a  Value and a  Store,  returns an
Answer).  If Var is not bound in the Store, c returns the Answer Error.

The other valuation functions can be analyzed in a similar fashion.
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Example
To find the meaning of the trivial program x:=17, we would reduce Γ[x:=17](λs.s)(λi.Error).  The λs.s is a final
StmtContinuation used to “terminate” the program and return the final Store as an Answer.  The λi.Error is the
initial  Store which returns an  Error for every lookup attempt; it indicates that no variables are initially bound.
The reduction can proceed as follows:

Γ[x:=17](λs.s) (λi.Error) ≡ (λc. Ε[17](λe.λs. c (bind s [x] e))) (λs.s) (λi.Error) (Γ[Var := Exp])
≡ (λc. (λk. k(Κ[17])) (λe.λs. c (bind s [x] e))) (λs.s) (λi.Error) (Ε[Var])
≡ (λc. (λk. k 17)) (λe.λs. c (bind s x e))) (λs.s) (λi.Error) (Κ[Const])
⇒ (λk. k 17)) (λe.λs. (λs.s) (bind s x e)) (λi.Error) (β)
⇒ (λe.λs. (λs.s) (bind s x e)) 17 (λi.Error) (β)
⇒ (λs. (λs.s) (bind s x 17)) (λi.Error) (β)
⇒ (λs.s) (bind (λi.Error) x 17) (β)
⇒ (bind (λi.Error) x 17) (β)

We get, as expected, a Store with a binding of 17 to x.

Summary
Denotational semantics ascribes meanings to programs by translating them into lambda calculus expressions.
The semantics of a language is a set of valuation functions which describe how programs written in that language
should  be  translated  to  lambda  calculus  expressions.   Although  harder  to  understand,  this  translation  has
advantages over operational semantics:
• The meaning of the lambda calculus is unique, well-defined, and well-known.  It might thus be possible to
define the meanings of mixing languages using the lambda calculus.
• Lambda calculus reductions can be used to prove properties of the language and prove the validity of compiler
optimizations.  For simple arithmetic optimizations such as a+b=b+a this is probably overkill, but the provability
of optimizations becomes important when exceptions or concurrent processes are present in the language, as it is
very easy to make incorrect assumptions when writing a compiler for such a language.

5.  Axiomatic Semantics
Axiomatic semantics describes the meaning of a program by listing its properties.  For example, the meaning of a
nondestructive integer sort routine could be described as:
Let A be an array of n integers, indexed 0 through n-1.  Calling sort on A returns a new array B, also of n integers.
Array B contains the same elements as A; formally, ∀v∈Z: |{i|0≤i<n ∧ A[i]=v}| = |{i|0≤i<n ∧ B[i]=v}| (for every
integer value  v, the number of elements of  A equal to  v is equal to the number of elements of  B equal to  v).
Moreover, the elements of B are in increasing order:  ∀i∈{0…n-2}: B[i]≤B[i+1].  This definition is independent of
the algorithm used to implement the sort function.

Axiomatic  semantics  is  useful  in  proving  properties  of  programs.   For  example,  a  deduction  that  the  above
properties hold for a given function proves that that function sorts an array of integers.  For simple applications
such as sorting,  this  proof  can,  in fact,  be carried out.   For complicated programs the benefits of  axiomatic
semantics will not be realized until the process of proving theorems is automated because writing proofs is itself
time-consuming and error-prone.  Nevertheless, axiomatic semantics are already in use in hardware design for
proving that two integrated circuits have compatible interfaces and can, therefore, communicate with each other.
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6.  Conclusion
Three  different  kinds  of  formal  semantics—operational,  denotational,  and  axiomatic—were  presented  in  this
paper,  but the field is by no means limited to these three.  All  of the kinds of formal semantics have some
common advantages and disadvantages:  Formal semantics are precise and powerful but tedious and hard to
learn.  They are not as well-known among users of languages as BNF grammars, but nowadays they are being
used fairly frequently in the design of programing languages, and they may be used for serious programming
verification tasks in the future.
In addition to the obvious application of formal semantics for unambiguously specifying the meanings of new
programming languages, several other applications exist:

Language Design Aids
Denotational semantics have been used to precisely define several existing programming languages, including
Pascal  and Scheme [2].   They have also been used to  assist  in  designing and implementing more complex
languages such as Ada [1].  The process of defining denotational semantics for a language can indicate weak
areas where the language is poorly or incorrectly defined.  This is especially important for modern programming
languages that include polymorphism, concurrency, and exception handling.  It is possible for programs written in
such languages to get into semantically difficult situations such as when an exception occurs within an exception
handler or propagates out of a concurrent task.  Properly handling everything that can go wrong requires the
discipline imposed by writing semantics for the language.  In these situations writing denotational semantics for a
language is useful even if no one other than the author ever reads them.

Verification
The holy grail  of  the study of  semantics is  the eventual  ability to prove programs correct.   Such proofs are
currently feasible, but only on a small scale (a few procedures), limiting their utility.  However, there does not
appear to be any fundamental  reason why large-scale programs could not be proven correct.   Once proving
programs' correctness does become practical, the art of computer programming will be changed forever.
In order to prove a program correct, one needs a specification of the program's correct behavior.  Without such a
specification, every program is correct—it just might not do what the user wants or expects.  One might argue
that the specification would be at least as large as the program which is being verified and that there are many
opportunities for making errors in the specification.  This is true, but, nevertheless, writing a specification is a
fundamentally  easier  process  than programming.   How much easier  it  is  to  just  describe  the  behavior  of  a
database than it is to write one!  Moreover, it is easy to write a specification that states that a program will never
crash.  Try writing a Macintosh program for which you would be willing to give the same guarantee!  Finally, tools
will undoubtedly be developed to ease the process of developing specifications by describing them graphically or
by example.
While  general  verification  of  programs  is  still  unreachable,  useful  work  proceeds  on  many  fronts.   The
development of type systems is one attempt to outlaw a class of common programming errors—type mismatches.
The initial type systems were too restrictive, but new, polymorphic ones are being developed.  Moreover, verifiers
are being written for proving that programs written in dynamically typed languages such as LISP will have no type
errors when run.
Formal verification has made greater inroads in hardware design than in software design.  Due to the high cost of
recalling  chips  and  missed  deadlines,  the  silicon  manufacturers  are  putting  great  emphasis  on  testing  and
verifying new chip designs.  Axiomatic semantics are used in the design of computer hardware components to
ensure  that  their  interfaces  match.   Various  timing  and  logic  analysis  tools  are  used  to  check  the  chip
specifications  against  the  design.   Designing  a  modern  VLSI  chip  is  comprised  largely  of  writing  an  initial
functional specification and successively translating it to more detailed spec
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ifications—register transfer, gate, transistor, and layout levels—and verifying that the two specifications match at
each step.  The verifications are often done by hand, and a lot of time, effort, and money could be saved by
automating them.
The Viper microprocessor is the first one to be completely verified by formal means.  Formal verification does not
guard against  fabrication errors,  but  at  least  it  ensures  that  the design satisfies the  specifications,  which is
important in life-critical situations.  Not too far into the future the hardware formal specifications may be made
available to system and software designers to allow entire systems including both software and hardware to be
verified.  Sometime later software may be built the way hardware is today.
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